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ANALOGY BETWEEN TURBULENT MOMENTUM AND HEAT 

TRANSFER UNDER COMPLEX CONDITIONS 

V. F. Potemkin ImC 532.526 

The analogy between turbulent momentum and heat transfer under complex condi- 
tions, i.e., under the action of several perturbing factors on the flow, is 
extended for a broad range of variation of the Prandtl number. 

Because the systems of differential equations for the mean characteristics of the tur- 
bulent boundary layer are not closed, empirical relationships must be utilized. As the 
number of perturbing factors increases, the setting up of such relationships becomes more 
and more difficult; moreover, the formulas obtained can be applied only for the conditions 
of the experiment performed. The complexity of the computation is aggravated by the fact 
that the Reynolds analogy between the turbulent momentum and heat transfer is spoiled [i, 2]. 

The question of a more general analogy between the momentum and heat transfer is con- 
sidered below in the turbulent core of a stationary near-wall flow under complex flow 
conditions that permit simplification of the heat-exchange parameter analysis. 

The basic dimensionless variables used to analyze forced turbulent heat transfer are 
the Reynolds Re, Stanton St, or Nusselt Nu numbers, and the friction coefficient cf/2, which 
are represented for convenience in the subsequent analysis as 

Re = zzs 6% ( 1 ) 

s t -  (2) 
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TABLE i. Development of the Turbulent Thermal Boundary 
Layer into a Dynamic behind a Section with Jump Change 
in the Wall Temperature according to Experimental Re- 
sults Presented in [3] 

Xc/~c a ',5,r K= u~-/ ~ 6T E6 '~% ~I,'~/.i~ 

1,4 
5,8 
7,3 

10,1 
18,8 
24,0 
29,7 
40,7 
57,3 

11,3 
14,3 
15,8 
15,9 
16,8 
18,1 
18,4 
19,4 
20,0 

1,74 
1,42 
1,56 
1,30 
1,21 
I ,42 
1,12 
1,35 
1,32 

0,45 
0,45 
0,44 
0,42 
0,42 
0,41 
0,39 
0,40 
0,40 

0,35 
0,34 
0,31 
0,33 
0,35 
0,30 
0,35 
0,30 
0,30 

0,78 
0,76 
0,70 
0,79 
0,83 
0,73 
0,90 
0,75 
0,75 

(~+ 
Nu = P r  - -  ( 3 )  ~ '  

c: 1 
- -  ~ _ o - . .  ( 4 )  

2 u( - 

We obtain from (2) and (4) for the coefficient of the Reynolds analogy K = St/i/2c f [3J 

K = .~ / o + .  (5 )  

For Pr = 1 and Pr t = i there is a Reynolds analogy between the turbulent momentum and heat 
transfers: K = i. 

An analogy is also used with respect to the turbulent transfer coefficients v t and a t 
by the introduction of the turbulent Prandtl number 

Ph  = v~/a~, (6) 

by considering that Pr t = I in many computations [4]. 

In the domain of the turbulent core 

u + = Alny+-~- B, (7 )  

~ + = C l n ~ + +  D, (8)  

and i f  q+ ~ 1, z+ ~ 1 h e r e ,  t h e n  Pr t [4] i s  d e t e r m i n e d  f rom t h e  s l o p e s  o f  t h e  l o g a r i t h m i c  
v e l o c i t y  (7)  and t e m p e r a t u r e  (8)  p r o f i l e s  in  t h e  form 

Prt = C/A, ( 9 )  

where A, C (exactly as B and D) are empirical constants. 

For complex turbulent flow conditions, the simple relationships (5) and (9) are not 
applicable under the simultaneous action of several factors such as substantial noniso- 
thermy, mass force fields (gravitational, electromagnetic, centrifugal), mass transfer 
on the boundary surfaced with changing configurations in space, etc., perturbing the 
stream. Giving the functional dependences of K and Pr t on these perturbing factors in (5) 
and (9) is quite difficult. 

Simple relationships characterizing the analogy between the turbulent momentum and heat 
transfer under complex conditions can be obtained on the basis of a turbulent boundary 
layer model [5]. 

Universal velocity and temperature distributions are described in [6] for the turbulent 
core in the form of generalized functions whose running values over the section fi(x, y) 
equal the values along the upper boundary of the core fdi(x) 

= ~ ,  (10) 

= ~ ,  (12) 
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TABLE 2. Heat Transfer in the Initial Section of a 
Smooth Pipe from Data of Barbin and Jones [9] and Jon- 
ka and Hanratty Presented in [7] 

X~ d 

1,0 
1,5 
2,5 
4,0 
4,5 
6,0 
7,5 

10,0 
10,5 
15,5 
16,5 

i 

20,1 

22,5 

22,7 

25,7 

26,9 

[9] 

0,37 

0,35 

0,36 

0,32 

0 , 3 2  

A_ 

'6T 

10,8 

14,0 
15,2 

16,1 

17,3 

18,8 

17] I ~s 

0,48 

0,41 
0,41 

0,41 

0,40 

0,38 

0,77 
0,90 

0,86 

0 , 8 8  

0,80 

0 , 8 4  

qs 

-% 
Q" /5 

m - - 3  ~ 
x--4 

-qs o es In Pr 

Fig. i. Dependence of the thermal 
boundary function X~ on the molec- 
ular Prandtl number Pr according 
to the data: I) [2]; 2) [4]; 3) [7]; 
4) [8]; 5) from (23). 

X -- X~. (13) 

Here ~ = In y+/(u + - i); X = in y+/(%+ - i); ~ = in(y/60)/(u + - u0+); X = in(y/~)/(% + - O0+). 
The subscript 0 refers to the lower boundary of the turbulent core z fo E instance, to the 
boundary of the Karman transition region. The boundary functions ~6, Xl, ~6, X6 contain all 
the dimensionless boundary variables that are in the complex (1)-(4): us-, @6 +, 8 +, 

As is shown in [4, 5], the velocity distribution (i0) is conservative to the action of 
mass force fields, nonisothermy, etc. on the stream for a zero pressure gradient. The tem- 
perature formula (ii) satisfactorily generalizes the known experimental data for Pr ~ i. For 
Pr ~ 1 (13) holds. 

Expanding the running values of ~ and X in (i0) and (ii), we obtain relationships analo- 
gous to (7) and (8) in the mode of writing: 

pr  t - 

? 'o r  t h e  z o n e  i n  w h i c h  z+ ~ q+ ~ 1,  

i 
u+_ . Iny+-F l, 

I 
# + .... in y+ + I. 

X~ 

which, in contrast to (7) and (8), do not contain empirical constants. 
find Pr t from (14) and (15) 

dO+/dy+ t+ ~r s t+ 

du+ / dY + q+ Y( 5 q+ 

(14) 

(15) 

According to [2], we 

( 1 6 )  

Prt== ~ / X ~ .  (17) 

For Pr ~ i also, from (12), (13) and the condition that ~@ = ~6 [6] for a zero pressure 
gradient 

P r t _  Ta .... ~ (18) 
X~ X6 

As Pr + 1 X 6 § X6 and (18) goes over into (17). 
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TABLE 3. Heat Transfer on a Porous 
Plate with Blowing (suction) from 
Data in [10-12] 

0 0,35 0,40 0,87 
0,0058 0,20 0,22 0,91 

--0,002 0,42 0,42 1,00 

Formula (18) is a generalized analogy between turbulent momentum and heat transfer. In 
contrast to (9) no empirical constants A, C are in (18), hence (18) can be applied for com- 
plex flow conditions. 

Let us show that the Reynolds analogy (5), where K = i, is a particular case of (18). In 
fact, for Pr t ~ 1 and Pr ~ i, from (17) 

In6+ In 6~ 
u ~ - - I  - -  @ ~ - -  1 ' (19) 

and if the thicknesses of the thermal 6 T and dynamic boundary layers agree, then (19) is 
identical to (5) for K = i. 

However, (17) and its analog (19) for Pr t = i are of more general nature than (5) for 
K = 1 since they are applicable to describe a broader circle of phenomena, for instance, for 
the case of the development of a thermal layer into a dynamic behind the section with a jump 
change in the wall temperature. This is because although 6 T < 6 in the development of a 
thermal stationary layer_into a dynamic one, for any value y = 6 T in the domain of the turbu- 
lent core (60 ~ y ~ 6), ~(6 T) = ~6(6) since (i0) is satisfied. 

As an illustration (Table I), the data of Blum (Xc/6 c = 1.4; 5.8; 10.1; 18.8; 29.7) and 
Perry, Hoffman (Xc/6 c = 7.3; 24.0; 40.7; 57.3) presented in [3] are considered. Here 6 c is 
the dynamic boundary layer thickness at the location of the wall temperature jump, and x c is 
the distance downstream from it. It is seen from Table 1 that for relatively small Xc/6 c 
for the data under consideration it is impossible to use the Reynolds analogy (K = 1 in [5]). 
At the same time, the ratio ~6/X6 in (17) varies between 0.76 and 0.90 according to the Blum 
data, between 0.70 and 0.75 according to the Perry, Hoffman data, and corresponds to Pr t 
values obtained, and therefore to (17). 

For a better comprehension of the influence of the molecular Prandtl number Pr on the 
analogy (18), we represent this expression in the form of three dependences: 

for Pr<l --~6 =X~ < X~, (20) 
Ph 

~F~ __X 6 ~- ~{~, (21) for Pr ,~ 1 Pr, 

for Pr 2> 1 ~F~ - X~ ~ X6. 
Prr (22)  

The inequalities in (20) and (22) are satisfied because as Pr diminishes or increases in 
X 6 the value %6~ diminishes or increases substantially while in 6T+ depends relatively weakly 
on Pr. 

Because Pr ~ 1 in (20) and (22), the thermal boundary function X6 that is convenient for 
computations is not related directly to the dynamic boundary function ~6, it is not at all 
convenient to use the relationships (20) and (22) since the quantities %o+ and 6o+ in X 6 are 
difficult to determine in the blurred boundary 6 o of the mixed transfer zone. However, if 
%6T+ or 6T+ is known, the temperature profile can be determined in the coordinates %+, In y+ 
even for an indefinite boundary 6 o if the dependence X6(Pr) is given. The method elucidated 
in [5] 

X ~ ( P r -  1 ) -  X~(Pr=y=l) - -C!nPr  (23)  

can be used to set it u~. According to the data in [2, 4, 7, 8], C = 0.13 (Fig. i). Because 
of the degeneration of X 6 as Pr grows, the relationship (23) is applicable for Pr ~ 10. 
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TABLE 4. Data from [13] about the Average Vertical 
Temperature Profile in the Northeastern Part of the Pa- 
cific Ocean, Obtained by Multiple Soundings 

y. m T. ~ T --  To In (p/6OT) O R 

110 
125 
160 
205 
260 
315 

11,0 
10,0 
9,0 
8,0 
7,0 
6,0 

0 
--I  ,0 
--2,0 
---3,0 
- - 4 , 0  
--5,0 

0 
0,128 
0,375 
0,623 
0,860 
1,052 

0 
0,20 , 
0,40 
0,60 
0,80 
1,00 

0 
0,12 
0,36 
0,59 
0,82 
I ,00 

Sketching the line (15) on a plane with coordinates %+, in y+ with X6 = X6 (Pr ~ i), the 
point of its intersection with the line ~+ = %6_+ or in y+ = in6w + can be found. Drawing 
a line with the slope Prt/P 6 through the point obtained, we obtain the desired temperature 
profile. 

As is known in [5], upon the simultaneous action of perturbing factors K i (i = I, 2 ..... 
N) that are weakly intercorrelated, on a turbulent flow characterized initially by the value 

~o. 
N 

~'a,, 2 ..... N(K~, K2 . . . . .  K~')= ~ a o - - X  lnf(Ki), (24)  
i ~ I  

where 

N A' 

X In [(Ki) = Nq~o-- X ~ ~6i (Ki). ( 2 5 )  
i = l  i : l  

Then  f o r  h e a t  t r a n s f e r  w i t h  ( 2 1 )  t a k e n  i n t o  a c c o u n t  

X61, 2 . . . . .  N(K1, K~ . . . . .  KN) = ~41. 2 . . . . . .  ~,(K1, K2 . . . . .  K~) ( 2 6 )  
Prt 

Analogous expressions can be obtained for the functions ~6, X6" Therefore, when ~60, 
~60, Prt and the laws of variation of the boundary functions ~6, ~ are known, under the 
action of independent causes K i the values ~6 , , .... N, X61,~,...,N, ~l,~,...,N, X~1,2... N 
are determined uniquely, which permit a judgm~n~ about the c~aracteristics of near-wall ' 
turbulent heat transfer under the simultaneous action of K i factors on a flow N. By virtue 
of (10)-(13), the running values of functions for a given section can be determined under 
complex conditions, on the basis of knowing the boundary functions (the subscript 6). The 
superposition principle (24), (25) and the generalized analogy between the momentum and heat 
transfer (20)-(22), (26) permit simplification of the analysis of the characteristics of a 
complex near-wall turbulent flow. 

As illustrations of the applicability of (21) to complex flow conditions, the data from 
[9] and from Jonka and Hanratty [7] about the hydrodynamics and heat transfer in the initial 
section of a smooth pipe for x/d < 17 are systematized in Table 2 (x is the distance from 
the tube exit, and d is its diameter), while the data from [10-12] on heat transfer on a 
porous plate for different blowing (suction) parameters F = Vw/U ~ are presented in Table 3 
(v w is the blowing velocity, x = 350 mm, zero pressure gradient). It is seen from the table 
that the ratio ~/X~ corresponds approximately to known values of Pr t. The data presented 
show that the dependence (26) is reliable. 

Besides (23), another approach to the simplification of utilizing (20), (22) for Pr ~ 1 
is that the functions ~0T, ~T, %0T, % in X~ are sought as boundary functions for zones in 
which (13), representable in the form 6T 

O : R, ( 2 7 )  

is satisfied, where 0 = (T - ToT)/(T6T - TOT); R = in (y/~0T)/in (6T/60T). 

As an illustration, data from [13] about the average vertical temperature profile in the 
northwestern part of the Pacific Ocean, obtained by multiple sounding, are presented in 
Table 4. Here y is the distance between the free surface and the ocean depths. Satisfactory 
correlation is seen between (27) and these data. According to [13], the rms spread oT(Y) in 
the temperature values in the layer from 145 to 185 m is ~ 0.4 ~ according to separate sound- 
ings. Then taking into account that the temperature scale O, should be on the order of oT(Y), 
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X6 ~ in (205/125)/[(10 - 8)/0.4] ~ 0.i0. Furthermore, let us calculate X6 for comparison 
with the value X6 obtained. For sea water Pr ~ 8.6 for T ~ 10~ From (23) X6I !Pr = l)- 
X~(Pr) = 0.28. Taking X61 = 0.40 (Fig. i), we obtain that X6 ~ 0.12, i.e., X6 = X6. From 
this example follows the deduction that in the absence of shear flow, when the change in 
temperature in a continuous medium is determined by turbulent fluctuations, X~ = X 6. 

NOTATION 

x, coordinate along the wall being streamlined, m; y, coordinate along the normal to 
the wall, m; u, mean longitudinal velocity, m/sec; T, mean temperature, ~ Tw, wall tem- 
perature, ~ v, kinematic coefficient of viscosity, m2/sec; v t, turbulent kinematic coeffi- 
cient of viscosity, m2/sec; p, density, kg/m3; Cp, specific heat, J/kg; ~, tangential 
stress, N/m2; ~w, tangential stress on the wall, N/m2; q, specific heat flux, W/m2; qw, 
specific heat flux at the wall, W/m2; a, coefficient of thermal diffusivity, m2/sec; ~ t, 
turbulent coefficient of thermal diffusivity, m2/sec; 6, dynamic boundary layer thickness, 
m; 6T," thermal boundary layer thickness, m; 60, lower boundary of the turbulent core, m; 
u, = V~w/P, dynamic velocity, m/sec; %, = qw/pc~u,, characteristic temperature, ~ y+ = 
yu,/~, a dimensionless coordinate; u + = u/u,, dimensionless velocity; ~+ = (T w - T)/%,, 
dimensionless temperature; T + = T/T w, dimensionless tangential stress; q+ = q/qw, dimen- 
sionless heat flux; P = in y+/(u + - i), �9 = In (y/60)/(u + - un+), dynamical functions of 
the turbulent core; X In y+/(%+ i), X in (y/60)/(% + %~+), thermal functions of the 
turbulent core; R = in (y/60)/in(6/60), generalized dimensionless coordinate; 0 = (T - To)/ 
(T 6 - To), generalized dimensionless temperature; Re = u~+~ +, Reynolds number; cf = 2/u6 t2, 
friction coefficient; Pr = v/a, molecular Prandtl number; Pr t = vt/a~ , turbulent Prandtl 
number; K = u6+/~6+, Reynolds analogy factor; St = i/u6+%6+, Stanton number; Nu = Pr6+/%6+, 
Nusselt number; Subscripts: *, stream parameter for y+ = i; 6, stream parameter for y = 6; 
0, stream parameter for y = 60; t, turbulent core parameter; w, wall parameter; and T, 
thermal layer parameter. 
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